What is Correlation Analysis and How is it Performed ?
April 3, 2025
Correlation analysis is a vital tool in the hands of any Six Sigma team. As the Six Sigma team enters the analyze phase they have access to data from various variables. They now need to synthesize this data and ensure that they are able to find a conclusive relationship. What is Correlation Analysis ? One…
The 5 why method or the Root Cause analysis method that has been described in the Tools section plays an important role in determining that the X’s are recorded at actionable level. In this implementation of the 5 why tool, there is a slight variation from the standard methodology and hence it has been explained…
Once the Scatter plot has been used to find out the correlation between the inputs being measured as well as the desired outputs, it is now time to come up with an equation which shows the precise relationship. This is called Regression. Regression is a technique which summarizes the relationships observed in the Scatter plot…
The confidence interval is a central concept of hypothesis testing. Although understanding its mathematical and statistical meaning is beyond the scope of this module, one needs to have a fair idea of the concept. Hence, a brief introduction of the confidence interval that is essential for the Six Sigma project team to understand is as follows:
The normal distribution is a continuous distribution. This means that the probability of reaching the exact point is zero. This conclusion has profound implication for estimation. This is because instead of reaching a point estimate, one needs to pen down an interval estimate to get a realistic answer. Thus we can’t say the probability of the value being exactly 100. However, we can make a fairly educated guess about whether the value will lie between 80 and 120.
A confidence interval attaches a probability to the above statement. For instance if we say that a value will lie between 80 and 120 with 90% confidence, we mean to say that there is a 9 out of 10 chance that this will be the case. However statistics operate on the law of large numbers and hence these values are expected to hold true only after a large number of experiments have been performed.
The confidence interval is therefore a result of using sampling. In the above case we can conclude that in a sample 90% of the total observations taken will have the value lying between 80 and 120.
The factors that influence the confidence interval have been listed down along with their precise relationship:
Hypothesis testing is almost always done on samples. Hence, we must understand that there can be a difference between the values drawn from the samples and the actual value of the population. This is what we call sampling error. This plays a vital role in interpretation of hypothesis testing. Hypothesis tests with a higher confidence level are more accurate than the ones with lower confidence levels.
Your email address will not be published. Required fields are marked *